Ädel, A. (2023). Adopting a ‘move’ rather than a ‘marker’ approach to metadiscourse: A taxonomy for spoken student presentations.
English for Specific Purposes, 6(69), 4-18.
https://doi.org/10.1016/j.esp.2022.09.001
Agarwal, V., & Misra, S. (2025). NCERT psychology class 12. SBPD publications.
Basu, A. (2025). AI Tools for Everyone: Your Guide to Artificial Intelligence. Springer Nature Switzerland.
Bernad-Mechó, E., & Valeiras-Jurado, J. (2023). Multimodal engagement strategies in science dissemination: A case study of TED talks and YouTube science videos.
Discourse Studies, 25(6), 733-754.
http://dx.doi.org/10.1177/14614456231161755
Bonner, E., Lege, R., & Frazier, E. (2023). Large language model-based artificial intelligence in the language classroom: practical ideas for teaching.
Teaching English with Technology, 23(1), 23-41.
http://dx.doi.org/10.56297/BKAM1691/WIEO1749
Bui, H. P. (2024). Applied linguistics and language education research methods: fundamentals and innovations. IGI Global.
Creswell, J. W. (2012). Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research (4th ed.). Pearson.
Ding, L., & Zou, D. (2024). Automated writing evaluation systems: A systematic review of Grammarly, Pigai, and Criterion with a perspective on future directions in the age of generative artificial intelligence.
Education and Information Technologies, 29(11), 14151-14203.
https://doi.org/10.1007/s10639-023-12402-3
Du, J., & Daniel, B. K. (2024). Transforming language education: A systematic review of AI-powered chatbots for English as a foreign language speaking practice.
Computers and Education: Artificial Intelligence, 6(3), 100-130.
https://doi.org/10.1016/j.caeai.2024.100230
El-Dakhs, D. A. S., Yahya, N., & Pawlak, M. (2022). Investigating the impact of explicit and implicit instruction on the use of interactional metadiscourse markers.
Asian-Pacific Journal of Second and Foreign Language Education, 7(1), 44.
http://dx.doi.org/10.1186/s40862-022-00175-0
ELSenbawy, O. M., Patel, K. B., Wannakuwatte, R. A., & Thota, A. N. (2025). Use of generative large language models for patient education on common surgical conditions: a comparative analysis between ChatGPT and Google Gemini.
Updates in Surgery,
28(2), 76-97.
https://doi.org/10.1007/s13304-025-02074-8
Esfandiari, R., & Allaf-Akbary, O. (2024a). The role of learning-oriented language assessment in promoting interactional metadiscourse in ectenic and synoptic EFL Learners.
Journal of Modern Research in English Language Studies, 11(3), 181-206.
https://doi.org/10.30479/jmrels.2024.19777.2305
Esfandiari, R., Allaf-Akbary, O. (2024b). Assessing interactional metadiscourse in EFL writing through intelligent data-driven learning: the Microsoft Copilot in the spotlight. Language Testing in Asia 14(1), 51. https://doi.org/10.1186/s40468-024-00326-9
Hyland, K. (2019). Metadiscourse: Exploring Interaction in Writing (2nd edition). Continuum.
Izquierdo, M., & Pérez Blanco, M. (2023). Interactional metadiscourse: Building rapport and solidarity in informational-persuasive discourse. An English-Spanish case study.
Journal of Pragmatics, 216(2), 106–120.
https://doi.org/10.1016/j.pragma.2023.08.005
Jeon, J., & Lee, S. (2023). Large language models in education: A focus on the complementary relationship between human teachers and ChatGPT.
Education and Information Technologies, 28(12), 15873-15892.
https://doi.org/10.1007/s10639-023-11834-1
Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., Seidel, T., Stadler, M., & Weller, J. (2023). ChatGPT for good? On opportunities and challenges of large language models for education.
Learning and Individual Differences,
103, Article 102274.
https://doi.org/10.1016/j.lindif.2023.102274
Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J., & Kim, H. (2023). Few-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in English education.
Education and Information Technologies, 29(9), 1-33.
http://dx.doi.org/10.1007/s10639-023-12249-8
Liu, C., & Tseng, M. (2021). Paradigmatic variation in hedging and boosting: A comparative study of discussions in narrative inquiry and grounded theory research.
Journal of English for Specific Purposes, 61, 1-16.
http://dx.doi.org/10.1016/j.esp.2020.08.002
Lytras, D. M., Alkhaldi, A., Malik, S., Claudia Serban, A. C., & Aldosemani, T. I. (2025).
The Evolution of Artificial Intelligence in Higher Education: Challenges, Risks, and Ethical Considerations.
Emerald Publishing Limited.
http://dx.doi.org/10.1108/9781835494868
Minnick, C. (2025).
Microsoft Copilot for Dummies.
Wiley.
Nave, S. C., & Carducci, J. B. (Eds.). (2021). The Wiley Encyclopedia of Personality and Individual Differences, Models and Theories. Wiley.
Pan, F. (2024). AI in Language Teaching, Learning, and Assessment. IGI Global.
Panini, I. (2024). Microsoft Copilot AI: Complete Guide and Ready to Use Manual with Integration in Office 365. Amazon Digital Services LLC – Kdp.
Pentina, I., Hancock, T., & Xie, T. (2023). Exploring relationship development with social chatbots: A mixed-method study of replica.
Computers in Human Behavior, 140(2), 107-127.
https://doi.org/10.1016/j.chb.2022.107600
Phakiti, A. (2003). A closer look at the relationship of cognitive and metacognitive strategy use to EFL reading comprehension test performance.
Language Testing, 20(1), 26-56.
http://dx.doi.org/10.1191/0265532203lt243oa
Posavec, K. (2025). Implementing Personalized Learning Techniques with AI. IGI Global.
Rahman, R. (2024). Microsoft Copilot for Power Apps: Transforming App Development with AI Assistance. Apress L. P.
Ryckman, M. R. (2020).
Theories of Personality. Wadsworth.
Sherkuziyeva, N., Imamutdinovna Gabidullina, F., Ahmed Abdel-Al Ibrahim, K., & Bayat, S. (2023). The comparative effect of computerized dynamic assessment and rater mediated assessment on EFL learners’ oral proficiency, writing performance, and test anxiety.
Language Testing in Asia, 13(1), 15-24.
https://doi.org/10.1186/s40468-023-00227-3
Soni, M. (2024). Artificial Intelligence Tools. Study guide.
Su, J., & Yang, W. (2023). AI literacy curriculum and its relation to children’s perceptions of robots and attitudes towards engineering and science: An intervention study in early childhood education.
Journal of Computer Assisted Learning, 5(2), 67-81.
https://doi.org/10.1111/jcal.12867
Tai, T., & Chen H. H. (2024). Improving elementary EFL speaking skills with generative AI chatbots: Exploring individual and paired interactions.
Computers & Education, 220, Article 105112.
https://doi.org/10.1016/j.compedu.2024.105112
Travers, C. J. (2022). Reflective Goal Setting: An Applied Approach to Personal and Leadership Development. Palgrave Macmillan.
Triki, N. (2024). Exemplification and reformulation in expert linguists’ writings: Elaborative metadiscourse between disciplinarity and individuality.
Journal of English for Academic Purposes, 71.
https://doi.org/10.1016/j.jeap.2024.101407
Weisi, H., & Zandi, M. (2024). A mixed-method concurrent transformative study of metadiscourse markers employed by L2 speakers: Does proficiency level matter?
Language Testing in Asia, 14(1), 60.
https://doi.org/10.1186/s40468-024-00330-z
Yang, N. (2021). Engaging readers across participants: A cross-interactant analysis of metadiscourse in letters of advice during the COVID-19 pandemic.
Journal of Pragmatics, 186(2), 181-193.
https://doi.org/10.1016/j.pragma.2021.10.017
Zhang, R., Zou, D., & Cheng, G. (2023). A review of chatbot-assisted learning: pedagogical approaches, implementations, factors leading to effectiveness, theories, and future directions.
Interactive Learning Environments, 32(8), 4529-4557.
https://doi.org/10.1080/10494820.2023.2202704